在△ABC中,AB=AC,点D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE,使∠DAE+∠BAC=180°.
论证:如图1,当∠BAC=90°时,连接CE、BE,其中BE交AC于点F.
(1)求证:△ABD≌△ACE;
(2)若BE平分∠ABC,求证:BD=FC;
探索:如图2,连接BE,取BE的中点G,连接AG.设AG=x.
(3)用含x的代数式表示CD的长;
(4)如图3,若∠BAC=120°,BD=AB,连接DE,DG,CE.当AG=1时,请直接写出DE的长.
【考点】三角形综合题.
【答案】(1)证明见解析;
(2)证明见解析;
(3)2x;
(4).
(2)证明见解析;
(3)2x;
(4)
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:244引用:2难度:0.3
相似题
-
1.【问题探究】在学习三角形中线时,我们遇到过这样的问题:如图①,在△ABC中,点D为BC边上的中点,AB=4,AC=6,求线段AD长的取值范围.我们采用的方法是延长线段AD到点E,使得AD=DE,连结CE,可证△ABD≌△ECD,可得CE=AB=4,根据三角形三边关系可求AD的范围,我们将这样的方法称为“三角形倍长中线”.则AD的范围是:.
【拓展应用】
(1)如图②,在△ABC中,BC=2BD,AD=3,AC=2,∠BAD=90°,求AB的长.10
(2)如图③,在△ABC中,D为BC边的中点,分别以AB、AC为直角边向外作直角三角形,且满足∠ABE=∠ACF=30°,连结EF,若AD=2,则EF=.(直接写出)3发布:2025/5/26 8:0:5组卷:411引用:5难度:0.4 -
2.如图①,在△ABC中,∠ABC=90°,AC=10,BC=6,D点为AC边的中点.点P在边AB上运动(点P不与A、B重合),连结PD、PC.设线段AP的长度为x.
(1)求AB的长.
(2)当△APD是等腰三角形时,求这个等腰三角形的腰长.
(3)连结PD、PC,当PD+PC取最小值时,求x的值.
(4)如图②,取AP的中点为O,以点O为圆心,以线段AP的长为直径的圆与线段PD有且只有一个公共点时,直接写出x的取值范围.发布:2025/5/26 6:30:2组卷:176引用:1难度:0.3 -
3.材料一:如图①,点C把线段AB分成两部分(AC>BC),若
=ACAB,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点.类似地,对于实数:a1<a2<a3,如果满足(a2-a1)2=(a3-a2)(a3-a1),则称a2为a1,a3的黄金数.BCAC
材料二:如果一条直线l把一个面积为S的图形分成面积为S1和S2两部分(S1>S2),且满足,那么称直线l为该图形的黄金分割线.如图②,在△ABC中,若线段CD所在的直线是△ABC的黄金分割线,过点C作一条直线交BD边于点E,过点D作DF∥EC交△ABC的一边于点F,连接EF,交CD于G.S1S=S2S1
问题:
(1)若实数0<a<1,a为0,1的黄金数,求a的值.
(2)S△CFGS△EDG.(填”>””<””=”)
(3)EF是△ABC的黄金分割线吗?为什么?发布:2025/5/26 11:0:2组卷:38引用:3难度:0.2