在平面直角坐标系中,O为坐标原点,抛物线y=-x2+c与y轴交于点P(0,4).
(1)直接写出抛物线的解析式.
(2)如图,将抛物线y=-x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
(3)直线BC与抛物线y=-x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.
(4)若将抛物线y=-x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=-x2+c平移的最短距离并求出此时抛物线的顶点坐标.

【考点】二次函数综合题.
【答案】(1)抛物线的解析式为y=-x2+4;
(2)△BCQ是直角三角形,理由见解析;
(3)T(,0)或(,0);
(4)平移后的抛物线的顶点为P′(,),平移的最短距离为.
(2)△BCQ是直角三角形,理由见解析;
(3)T(
1
+
2
5
3
3
+
3
5
4
(4)平移后的抛物线的顶点为P′(
5
8
27
8
5
2
8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1636引用:3难度:0.3
相似题
-
1.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点A(x1,y1),B(x2,y2),满足x1-x2=y1-y2=m(m>0),则称此函数为关于m的“P函数”,这两点叫做一对关于m的“C点”.
(1)下列函数中,其图象上至少存在一对关于1的“C点”的,请在相应题目后面横线上打“√”,不存在的打“×”;
①y=x-2 ;②y=-x+1 ;③y=x2;
(2)若双曲线为关于4的“P函数”,求n的取值范围;y=nx
(3)关于x的函数D:y=kx+n是关于t的“P函数”,且当0<x<4时,函数D与抛物线y=-x2+4nx-n的图象有两个不同的交点,求n的取值范围.发布:2025/5/24 19:0:1组卷:471引用:1难度:0.2 -
2.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:
x … -1 0 1 3 … y … 0 3 m 0 ……
(2)若点P(t,0)是x轴上的动点,抛物线与y轴交于点A,顶点为B.求|PA-PB|的最大值及对应的点P的坐标;
(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2-2a|x|+c的图象只有一个公共点,求t的取值范围.发布:2025/5/24 19:0:1组卷:53引用:1难度:0.3 -
3.如图,在平面直角坐标系xOy中,抛物线y=x2+ax+a-5与x轴交于点A,B两点(点A在点B的左侧),与y轴交于点C,对称轴是直线x=-1.
(1)求抛物线的解析式及顶点坐标;
(2)若P(n,c)和Q(2,b)是抛物线上两点,且c<b,求n的取值范围;
(3)连接BC,若M(xM,yM)是y轴左侧抛物线上的一点,N为x轴上一动点,当MN∥BC,且MN>BC时,请直接写出点M的横坐标xM的取值范围.发布:2025/5/24 19:0:1组卷:109引用:3难度:0.3