在边长为8的等边三角形ABC中,D为BC的中点,E,F分别为AC、AD上任意一点,连接EF,将线段EF绕点E顺时针旋转60°得到线段EG,连接FG交AC于点N,连接AG.
(1)如图1,点E与点C重合,且GF的延长线过点B,证明:四边形AFEG是菱形;
(2)如图2,EF的延长线交AB于点M,当AM+MF=AE时,求∠EAG的度数;
(3)如图3,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G长度的最小值.

【考点】四边形综合题.
【答案】(1)证明见解析;
(2)20°;
(3)4-4.
(2)20°;
(3)4
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:967引用:2难度:0.2
相似题
-
1.综合与实践
问题情境:
如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE'(点A的对应点为点C),延长AE交CE'于点F,连接DE.
猜想证明:
(1)试判断四边形BE'FE的形状,并说明理由;
(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;
解决问题:
(3)如图①,若AB=15,CF=3,则AE的长为 .发布:2025/5/22 22:30:1组卷:178引用:1难度:0.1 -
2.已知:如图①,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点A出发,沿AB方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PC、PE,设运动时间为t(s)(0<t<8).解答下列问题:
(1)当t为何值时,点A在线段PE的垂直平分线上?
(2)设四边形PCFE的面积为y(cm2),求y与t之间的函数关系式;
(3)如图②,连接PO、EO,是否存在某一时刻t,使∠POE=90°?若存在,求出t的值;若不存在,请说明理由.发布:2025/5/22 21:0:1组卷:374引用:3难度:0.1 -
3.如图,在四边形ABCD中,AB∥CD,∠ABC=90°,AB=8cm,BC=6cm,AD=10cm,点P、Q分别是线段CD和AD上的动点.点P以2cm/s的速度从点D向点C运动,同时点Q以1cm/s的速度从点A向点D运动,当其中一点到达终点时,两点停止运动,将PQ沿AD翻折得到QP',连接PP'交直线AD于点E,连接AC、BQ.设运动时间为t(s),回答下列问题:
(1)当t为何值时,PQ∥AC?
(2)求四边形BCPQ的面积S(cm2)关于时间t(s)的函数关系式;
(3)是否存在某时刻t,使点Q在∠P'PD平分线上?若存在,求出t的值;若不存在,请说明理由.发布:2025/5/22 21:0:1组卷:244引用:2难度:0.1