试卷征集
加入会员
操作视频

随机变量的概念是俄国数学家切比雪夫在十九世纪中叶建立和提倡使用的.切比雪夫在数论、概率论、函数逼近论、积分学等方面均有所建树,他证明了如下以他名字命名的离散型切比雪夫不等式:设X为离散型随机变量,则P(|X-E(X)|≥λ)≤
D
X
λ
2
,其中λ为任意大于0的实数.切比雪夫不等式可以使人们在随机变量X的分布未知的情况下,对事件|X-λ|≤λ的概率作出估计.
(1)证明离散型切比雪夫不等式;
(2)应用以上结论,回答下面问题:
已知正整数n≥5.在一次抽奖游戏中,有n个不透明的箱子依次编号为1,2,⋯,n,编号为i(1≤i≤n)的箱子中装有编号为0,1,⋯,i的i+1个大小、质地均相同的小球.主持人邀请n位嘉宾从每个箱子中随机抽取一个球,记从编号为i的箱子中抽取的小球号码为Xi,并记X=
n
i
=
1
X
i
i
.对任意的n,是否总能保证P(X≤0.1n)≥0.01(假设嘉宾和箱子数能任意多)?并证明你的结论.
附:可能用到的公式(数学期望的线性性质):
对于离散型随机变量X,X1,X2,⋯,Xn满足X=
n
i
=
1
X
i
,则有E(X)=
n
i
=
1
E
X
i

【答案】(1)证明见解析;
(2)不能保证P(X≤0.1n)≥0.01,证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:172引用:2难度:0.6
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正