【知识生成】我们知道,用两种不同的方法计算同一个几何图形的面积,可以得到一些代数恒等式.

例如:图1可以得到(a+b)2=a2+2ab+b2基于此,请解答下列问题:
(1)根据图2,写出一个代数恒等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2ab+2ac+2bc;
(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=12,ab+bc+ac=27,则a2+b2+c2=9090;
(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+3b)的长方形,则x+y+z=1212;
【知识迁移】(4)类似地,用两种不同的方法计算几何体的体积同样可以得到一些代数恒等式.图4表示的是一个棱长为x的正方体挖去一个边长为2的小长方体后重新拼成一个新长方体.请你根据图4中两个图形的变化关系,写出一个代数恒等式:x3-4x=x(x+2)(x-2)x3-4x=x(x+2)(x-2).
【答案】=a2+b2+c2+2ab+2ac+2bc;90;12;x3-4x=x(x+2)(x-2)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:853引用:6难度:0.6
相似题
-
1.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.
(1)图②中的阴影部分的面积为
(2)观察图②请你写出三个代数式(m+n)2、(m-n)2、mn之间的等量关系是
(3)若x+y=-6,xy=2.75,则x-y=
(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了发布:2025/6/17 22:30:1组卷:748引用:9难度:0.7 -
2.用四个完全一样的长方形(长、宽分别设为a,b,a>b)拼成如图所示的大正方形,已知大正方形的面积为121,中间空缺的小正方形的面积为13,则下列关系式:①a+b=11;②(a-b)2=13;③ab=27;④a2+b2=76,其中正确的是 (填序号).
发布:2025/6/17 21:0:1组卷:604引用:5难度:0.6 -
3.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为( )
发布:2025/6/17 21:30:1组卷:4418引用:18难度:0.7