试卷征集
加入会员
操作视频

(1)如图1,P是半径为5的⊙O上一点,直线l与⊙O交于A、B两点,AB=8,则△ABP面积的最大值为
32
32

问题探究:
(2)如图2,在等腰△ABC中,BA=BC,∠ABC=45°,F是高AD和高BE的交点.
①请求出△ABF与△BDF的面积之比;
②若BD=4,求△ABF的面积.
问题解决:
(3)如图3,四边形ABCD是某区的一处景观示意图,AD∥BC,∠ABC=60°,∠BCD=90°,AB=60m,BC=80m,M是AB上一点,且AM=20m.按设计师要求,需在四边形区域内确定一个点N,修建花坛△AMN和草坪△BCN,且需DN=25m.已知花坛的造价是每平米200元,草坪的造价是每平米100元,请帮设计师算算修好花坛和草坪预算最少需要多少元?

【考点】圆的综合题
【答案】32
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:153引用:4难度:0.1
相似题
  • 1.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.

    (1)求证:P为优弧BAC的中点;
    (2)连接PC,求PC的长度;
    (3)求sin∠BAC的值;
    (4)若△ABC为非锐角三角形,请直接写出△ABC的面积的最大值.

    发布:2025/6/15 3:0:1组卷:97引用:1难度:0.1
  • 2.在⊙O中,已知AB为直径,C、D是⊙O上两点,且C、D在AB的两侧,OD⊥AB,CD交AB于E点,过E作EF∥BC交AC于F点.
    (1)求证:CD平分∠ACB;
    (2)若AF:CF=1:2,且CE=2,求△ACE的面积.

    发布:2025/6/16 4:0:2组卷:73引用:2难度:0.5
  • 3.请阅读下面材料,并完成相应的任务;
    阿基米德折弦定理
    阿基米德(Archimedes,公元前287-公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
    阿拉伯Al-Biruni(973年-1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.
    阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是
    ˆ
    ABC
    的中点,则从点M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.
    这个定理有很多证明方法,下面是运用“垂线法”证明CD=AB+BD的部分证明过程.

    证明:如图2,过点M作MH⊥射线AB,垂足为点H,连接MA,MB,MC.
    ∵M是
    ˆ
    ABC
    的中点,
    ∴MA=MC.

    任务:
    (1)请按照上面的证明思路,写出该证明的剩余部分;
    (2)如图3,已知等边三角形ABC内接于⊙O,D为
    ˆ
    AC
    上一点,∠ABD=15°,CE⊥BD于点E,CE=2,连接AD,则△DAB的周长是

    发布:2025/6/15 17:30:2组卷:757引用:4难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正