课本再现:
(1)如图1,四个全等的直角三角形拼成一个大正方形,中间空白部分也是正方形.已知直角三角形的两直角边长分别为a,b,斜边长为c.课堂上,老师结合图形,用不同的方式表示大正方形的面积,证明了勾股定理.请证明:a2+b2=c2.
类比迁移
(2)现将图1中的两个直角三角形向内翻折,得到图2,若a=3,b=4,则空白部分的面积为 1313.
方法运用
(3)小贤将四个全等的直角三角形拼成图3的“帽子”形状,若AH=3,BH=4,请求出“帽子”外围轮廓(实线)的周长.
(4)如图4,分别以Rt△ABC的三条边向外作三个正方形,连接EC,BG,若设S△EBC=S1,S△BCG=S2,S正方形BCIH=S3,则S1,S2,S3之间的关系为 2(S1+S2)=S32(S1+S2)=S3.

【答案】13;2(S1+S2)=S3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/9 9:30:1组卷:1108引用:5难度:0.5
相似题
-
1.阅读理解:
我们知道在直角三角形中,有无数组勾股数,例如5,12,13;9,40,41;…但其中也有一些特殊的勾股数,例如:3,4,5是三个连续正整数组成的勾股数.
解决问题:
(1)在无数组勾股数中,是否存在三个连续偶数能组成勾股数?若存在,试写出一组勾股数;
(2)在无数组勾股数中,是否还存在其他的三个连续正整数能组成勾股数?若存在,求出勾股数;若不存在,说明理由.发布:2025/6/17 4:30:1组卷:109引用:1难度:0.6 -
2.如图所示的正方形是由四个全等的直角三角形拼成的,直角三角形的两条直角边长分别为2,3,则大正方形的面积为 .
发布:2025/6/17 2:0:1组卷:372引用:3难度:0.7 -
3.如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是.
发布:2025/6/17 1:30:2组卷:320引用:4难度:0.7