如图,已知直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=AA1=2,E是BC的中点,F是A1E上一点,且A1F=2FE.
(Ⅰ)证明:AF⊥平面A1BC;
(Ⅱ)求三棱锥C1-A1FC的体积.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:262引用:5难度:0.4
相似题
-
1.≜如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(1)证明:BC⊥平面ACD;
(2)若AB=2,BC=1,tan∠EAB=,试求该简单组合体的体积V.32发布:2025/1/20 8:0:1组卷:25引用:1难度:0.5 -
2.如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点.
(1)求证:BC⊥平面PAC;
(2)求证:平面PAC⊥平面PBC.发布:2025/1/28 8:0:2组卷:124引用:3难度:0.3 -
3.如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上异于A,B的点,
(1)求证:BC⊥平面PAC;
(2)设Q,M分别为PA,AC的中点,问:对于线段OM上的任一点G,是否都有QG∥平面PBC?并说明理由.发布:2025/1/28 8:0:2组卷:35引用:2难度:0.3