某校数学组老师为了解学生数学学科核心素养整体发展水平,组织本校8000名学生进行针对性检测(检测分为初试和复试),并随机抽取了100名学生的初试成绩,绘制了频率分布直方图,如图所示.
(1)根据频率分布直方图,求样本平均数的估计值;
(2)若所有学生的初试成绩X近似服从正态分布N(μ,σ2),其中μ为样本平均数的估计值,σ≈14.初试成绩不低于90分的学生才能参加复试,试估计能参加复试的人数;
(3)复试共三道题,规定:全部答对获得一等奖;答对两道题获得二等奖;答对一道题获得三等奖;全部答错不获奖.已知某学生进入了复试,他在复试中前两道题答对的概率均为a,第三道题答对的概率为b.若他获得一等奖的概率为18,设他获得二等奖的概率为P,求P的最小值.
附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X≤μ+σ)≈0.6827,P(μ-2σ<X≤μ+2σ)≈0.9545,P(μ-3σ<X≤μ+3σ)≈0.9973.
1
8
【考点】频率分布直方图的应用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:689引用:12难度:0.6
相似题
-
1.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本的平均重量为( )
发布:2024/12/29 13:30:1组卷:133引用:5难度:0.9 -
2.从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125) 频数 6 26 38 22 8
(2)估计这种产品质量指标的平均数及方差
(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
附:方差运算公式s2=p1(x1)2+p2(x2-x)2+…+pn(xn-x)2其中pi为第i组频率.-x发布:2024/12/29 13:30:1组卷:116引用:3难度:0.6 -
3.沪昆高速铁路全线2016年12月28日开通运营.途经鹰潭北站的G1421、G1503两列列车乘务组工作人员为了了解乘坐本次列车的乘客每月需求情况,分别在两个车次各随机抽取了100名旅客进行调查,下面是根据调查结果,绘制了月乘车次数的频率分布直方图和频数分布表.
G1503乘车次数分组 频数 [0,5) 15 [5,10) 20 [10,15) 25 [15,20) 24 [20,25) 11 [25,0] 5
(2)已知在G1503次列车随机抽到的50岁以上人员有35名,其中有10名是“老乘客”,由条件完成2×2列联表,并根据资料判断,是否有90%的把握认为年龄与乘车次数有关,说明理由.老乘客 新乘客 合计 50岁以上 50岁以下 合计 (其中n=a+b+c+d为样本容量)k2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(k2≥k0) 0.25 0.15 0.10 0.05 0.025 k0 1.323 2.072 2.706 3.841 5.024 发布:2025/1/9 8:0:2组卷:47引用:2难度:0.7