试卷征集
加入会员
操作视频

问题呈现:
如图1,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE是⊙O的切线.
问题分析:
连接OB,要证明BE是⊙O的切线,只要证明OB
BE,由题意知∠E=90°,故只需证明OB
DE.
解法探究:
(1)小明对这个问题进行了如下探索,请补全他的证明思路:
如图2,连接AD,由∠ECB是圆内接四边形ABCD的一个外角,可证∠ECB=∠BAD,因为OB=OC,所以
∠CBO=∠BCO
∠CBO=∠BCO
,因为BD=BA,所以
∠BAD=∠BDA
∠BAD=∠BDA
,利用同弧所对的圆周角相等和等量代换,得到
∠ECB=∠CBO
∠ECB=∠CBO
,所以DE∥OB,从而证明出BE是⊙O的切线.
(2)如图3,连接AD,作直径BF交AD于点H,小丽发现BF⊥AD,请说明理由.
(3)利用小丽的发现,请证明BE是⊙O的切线.(要求给出两种不同的证明方法).

【考点】圆的综合题
【答案】⊥;∥;∠CBO=∠BCO;∠BAD=∠BDA;∠ECB=∠CBO
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:442引用:3难度:0.3
相似题
  • 1.在⊙O中,已知AB为直径,C、D是⊙O上两点,且C、D在AB的两侧,OD⊥AB,CD交AB于E点,过E作EF∥BC交AC于F点.
    (1)求证:CD平分∠ACB;
    (2)若AF:CF=1:2,且CE=2,求△ACE的面积.

    发布:2025/6/16 4:0:2组卷:73引用:2难度:0.5
  • 2.请阅读下面材料,并完成相应的任务;
    阿基米德折弦定理
    阿基米德(Archimedes,公元前287-公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
    阿拉伯Al-Biruni(973年-1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.
    阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是
    ˆ
    ABC
    的中点,则从点M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.
    这个定理有很多证明方法,下面是运用“垂线法”证明CD=AB+BD的部分证明过程.

    证明:如图2,过点M作MH⊥射线AB,垂足为点H,连接MA,MB,MC.
    ∵M是
    ˆ
    ABC
    的中点,
    ∴MA=MC.

    任务:
    (1)请按照上面的证明思路,写出该证明的剩余部分;
    (2)如图3,已知等边三角形ABC内接于⊙O,D为
    ˆ
    AC
    上一点,∠ABD=15°,CE⊥BD于点E,CE=2,连接AD,则△DAB的周长是

    发布:2025/6/15 17:30:2组卷:757引用:4难度:0.1
  • 3.如图,直角坐标系中,直线y=kx+b分别交x,y轴于点A(-8,0),B(0,6),C(m,0)是射线AO上一动点,⊙P过B,O,C三点,交直线AB于点D(B,D不重合).
    (1)求直线AB的函数表达式.
    (2)若点D在第一象限,且tan∠ODC=
    5
    3
    ,求点D的坐标.
    (3)当△ODC为等腰三角形时,求出所有符合条件的m的值.
    (4)点P,Q关于OD成轴对称,当点Q恰好落在直线AB上时,直接写出此时BQ的长.

    发布:2025/6/16 6:0:1组卷:324引用:5难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正