【建立模型】课本第7页介绍:美国总统伽菲尔德利用图1验证了勾股定理,直线l过等腰直角三角形ABC的直角顶点C:过点A作AD⊥l于点D,过点B作BE⊥l于点E研究图形,不难发现:△ADC≌△CEB.(无需证明):
【模型运用】
(1)如图2,在平面直角坐标系中,等腰Rt△ACB,∠ACB=90°,AC=BC,点C的坐标为(0,-2),A点的坐标为(4,0),求B点坐标;
(2)如图3,在平面直角坐标系中,直线l1的函数解析式为:y=2x+4分别与y轴,x轴交于点A,B,将直线l1绕点A顺时针或逆时针旋转45°得到l2,请任选一种情况求l2的函数表达式;
(3)如图4,在平面直角坐标系,点B(6,4),过点B作AB⊥y轴于点A,作BC⊥x轴于点C,P为线段BC上的一个动点,点Q(a,2a-4)位于第一象限.问点A,P,Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出a的值;若不能,请说明理由.

【考点】一次函数综合题.
【答案】(1)B(-2,2);
(2)y=x+4;
(3)能,.
(2)y=
1
3
(3)能,
14
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:3105引用:5难度:0.1
相似题
-
1.如图1,在平面直角坐标系中,直线AB:y=
x+4与坐标轴交于A,B两点,点C为AB的中点,动点P从点A出发,沿AO方向以每秒1个单位的速度向终点O运动,同时动点Q从点O出发,以每秒2个单位的速度沿射线OB方向运动,当点P到达点O时,点Q也停止运动.以CP,CQ为邻边构造▱CPDQ,设点P运动的时间为t秒.-43
(1)直接写出点C的坐标为 .
(2)如图2,过点D作DG⊥y轴于G,过点C作CH⊥x轴于H.证明:△PDG≌△CQH.
(3)如图3,连结OC,当点D恰好落在△OBC的边所在的直线上时,求所有满足要求的t的值.发布:2025/6/8 2:30:2组卷:637引用:6难度:0.4 -
2.如图,在平面直角坐标系中,点O为坐标原点,四边形OABC是矩形,OA边在x轴的正半轴上,OC边在y轴的正半轴上,点B(6,4),点D在BC边上,且∠DOB=∠AOB.
(1)求直线OD的解析式;
(2)点P从D点出发,以每秒1个单位的速度沿射线DB运动,连接PA,设△PAB的面积为S,P点的运动时间为t秒,求S与t的函数关系式并直接写出自变量t的取值范围;
(3)在(2)的条件下,点P运动到BC的中点,E为AB上一点,连接OE,且∠COP=2∠EOA,连接PE,交BO于点M,求PM的长.发布:2025/6/7 23:30:2组卷:47引用:1难度:0.3 -
3.如图1,在平面直角坐标系中,直线L2:y=-
x+6与L1:y=12x交于点A,分别与x轴、y轴交于点B、C.12
(1)分别求出点A、B、C的坐标;
(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;
(3)在(2)的条件下,设P是直线CD上的点,在平面内是否存在其它点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.发布:2025/6/7 23:30:2组卷:349引用:1难度:0.1