如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.
(1)求证:△AMB≌△ENB;
(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;
(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.

【考点】全等三角形的判定与性质;等边三角形的性质.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:2382引用:4难度:0.1
相似题
-
1.已知AB=AC,BD=CE,求证:∠B=∠C.
发布:2025/6/8 9:0:1组卷:1010引用:12难度:0.8 -
2.如图,已知AD,AF分别是钝角△ABC和钝角△ABE的高,如果AD=AF,AC=AE.
(1)求证:BC=BE;
(2)若∠DBF=∠BAC=30°,AC=4,求AD的长.发布:2025/6/8 7:30:1组卷:76引用:1难度:0.5 -
3.如图,在△ABC中,CD是△ABC的角平分线,DE⊥BC于E,F,G分别是边AC,BC上的点,连接DF,DG,若DF=DG,△CDF和△DEG的面积分别为50和15,则△CDG的面积为 .
发布:2025/6/8 7:30:1组卷:436引用:5难度:0.5