宋代制酒业很发达,为了存储方便,酒缸是要一层一层堆起来的,形成堆垛,用简便的方法算出堆垛中酒缸的总数,古代称之为堆垛术.有这么一道关于“堆垛”求和的问题:将半径相等的圆球堆成一个三角垛,底层是每边为n个圆球的三角形,向上逐层每边减少一个圆球,顶层为一个圆球,记自上而下第n层的圆球总数为an,容易发现:a1=1,a2=3,a3=6,则a10-a5=( )
【考点】归纳推理.
【答案】B
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:61引用:4难度:0.7
相似题
-
1.按数列的排列规律猜想数列
,23,-45,87,…的第10项是( )-169发布:2024/12/29 13:30:1组卷:105引用:6难度:0.8 -
2.根据给出的数塔猜测123456×9+7=( )
1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111
12345×9+6=111111
…发布:2024/12/29 11:0:2组卷:545引用:8难度:0.9 -
3.如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n层有an个球,上往下n层球的总数为Sn,则( )
发布:2024/12/29 6:30:1组卷:112引用:7难度:0.7