阅读材料,大数学家高斯在上学读书时曾经研究过这样一个问题:
1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=12n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?
观察下面三个特殊的等式:
1×2=13×(1×2×3-0×1×2);
2×3=13×(2×3×4-1×2×3);
3×4=13×(3×4×5-2×3×4).
将这三个等式的两边相加,可以得到1×2+2×3+3×4=13×3×4×5=20.
读完这段材料,请你思考后回答:
(1)计算:1×2+2×3+…+99×100=333300333300;
(2)计算:1×2+2×3+…+n(n+1)=13n(n+1)(n+2)13n(n+1)(n+2);
(3)你能仿照上面探索过程,计算出1×2×3+2×3×4+…+20×21×22吗?试试看.
1
2
1
3
1
3
1
3
1
3
1
3
1
3
【答案】333300;n(n+1)(n+2)
1
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:122引用:2难度:0.4
相似题
-
1.已知:
(n=1,2,3,…),记b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),则通过计算推测出bn的表达式bn=an=1(n+1)2发布:2025/6/20 5:0:1组卷:2912引用:42难度:0.1 -
2.若a≠2,则我们把
称为a的“友好数”,如3的“友好数”是22-a,-2的“友好数”是22-3=-2,已知a1=3,a2是a1的“友好数”,a3是a2的“友好数”,a4是a3的“友好数”,……,以此类推,则a2021=( )22-(-2)=12发布:2025/6/20 3:0:1组卷:1025引用:5难度:0.7 -
3.用有序数对(a,b)表示第a排,从左至右第b个数.例如(4,3)表示的数是9,则(7,2)表示的数是 .
发布:2025/6/20 12:30:2组卷:50引用:4难度:0.5