试卷征集
加入会员
操作视频

若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.

(1)①在“平行四边形、矩形、菱形、正方形”中,一定不是“美丽四边形”的有
菱形、正方形
菱形、正方形

②若矩形ABCD是“美丽四边形”,且AB=1,则BC=
3
3
3
3
3
3

(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC,为直径,AP=2,PC=8,求另一条对角线BD的长;
(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(-2,0),C(1,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为6
3
,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.

【考点】二次函数综合题
【答案】菱形、正方形;
3
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:636引用:2难度:0.2
相似题
  • 1.如图,抛物线y=ax2+
    9
    4
    经过△ABC的三个顶点,点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.
    (1)求该抛物线的函数关系表达式;
    (2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.

    发布:2025/6/16 19:30:1组卷:730引用:9难度:0.4
  • 2.如图,已知抛物线y=ax2+bx+c过点A(6,0),B(-2,0),C(0,-3).
    (1)求此抛物线的解析式;
    (2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积;
    (3)若点Q在x轴上,点G为该抛物线的顶点,且∠QGA=45°,求点Q的坐标.

    发布:2025/6/16 23:0:1组卷:401引用:5难度:0.5
  • 3.如图,直线y1=-x+3与x轴于交于点B,与y轴交于点C.抛物线y2=-x2+bx+c经过B、C两点,并与x轴另一个交点为A.
    (1)求抛物线y2的解析式;
    (2)若点M在抛物线上,且S△MOC=4S△AOC,求点M的坐标;
    (3)设点P是线段BC上一动点,过P作PQ⊥x轴,交抛物线于点Q,求线段PQ长度的最大值.

    发布:2025/6/17 2:0:1组卷:1010引用:3难度:0.3
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正