已知△ABC,AD是一条角平分线.

(1)【探究发现】如图1所示,若AD是∠BAC的角平分线,可得到结论:ABAC=BDDC.
小红的解法如下:
过点D作DE⊥AB于点E,DF⊥AC于点F,过点A作AG⊥BC于点G,
∵AD是∠BAC的角平分线,且DE⊥AB,DF⊥AC,
∴DE=DFDE=DF,( 角平分线的性质角平分线的性质)
S△ABDS△ADC=12AB×DE12AC×DF=ABACABAC,∵S△ABDS△ADC=12BD×AG12CD×AG=BDCD,∴ABAC=BDDC
(2)【类比探究】如图2所示,若AD是∠BAC的外角平分线,AD与BC的延长线交于点D.求证:ABAC=BDCD;
(3)【拓展应用】如图3所示,在△ABC中,∠BAC=60°,BF、CE分别是∠ABC、∠ACB的角平分线且相交于点D,若EDCD=22,直接写出FCBC的值是 2-22-2.
AB
AC
=
BD
DC
S
△
ABD
S
△
ADC
=
1
2
AB
×
DE
1
2
AC
×
DF
AB
AC
AB
AC
S
△
ABD
S
△
ADC
=
1
2
BD
×
AG
1
2
CD
×
AG
=
BD
CD
AB
AC
=
BD
DC
AB
AC
=
BD
CD
ED
CD
=
2
2
FC
BC
2
2
【考点】相似形综合题.
【答案】DE=DF;角平分线的性质;;2-
AB
AC
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:199引用:3难度:0.2
相似题
-
1.【感知】
小明同学复习“相似三角形”的时候遇到了这样的一道题目:如图,在△ABC中,AB=AC,D为BC上一点,过点D作∠ADE=∠B,交AC于点E.求证:△ABD∽△DCE.
【探究】
在△ABC中,AB=AC=10,BC=16,D为BC上一点.
(1)如图②,过点D作∠ADE=∠B,交AC于点E.当DE∥AB时,AD的长为 .
(2)如图③,过点D作∠FDE=∠B,分别交AB、AC于点F、E.当CD=4时,BF的长的取值范围为 .发布:2025/6/14 15:30:1组卷:349引用:5难度:0.3 -
2.如图,在△ABC中,∠C=90°,AC=8cm,动点P从点C出发沿着C-B-A的方向以2cm/s的速度向终点A运动,另一动点Q同时从点A出发沿着AC方向以1cm/s的速度向终点C运动,P、Q两点同时到达各自的终点,设运动时间为t(s).△APQ的面积为S cm2.
(1)求BC的长;
(2)求S与t的函数关系式,并写出t的取值范围;
(3)当t为多少秒时,以P、C、Q为顶点的三角形和△ABC相似?发布:2025/6/14 19:0:1组卷:227引用:5难度:0.4 -
3.在四边形ABCD中,∠EAF=
∠BAD(E、F分别为边BC、CD上的动点),AF的延长线交BC延长线于点M,AE的延长线交DC延长线于点N.12
(1)如图①,若四边形ABCD是正方形,求证:△ACN∽△MCA;
(2)如图②,若四边形ABCD是菱形.
①(1)中的结论是否依然成立?请说明理由;
②若AB=8,AC=4,连接MN,当MN=MA时,求CE的长.发布:2025/6/14 19:0:1组卷:1404引用:3难度:0.1