小亮和小红在公园放风筝,不小心让风筝挂在树梢上,风筝固定在A处(如图),为测量此时风筝的高度,他俩按如下步骤操作:
第一步:小亮在测点D处用测角仪测得仰角∠ACE=β.
第二步:小红量得测点D处到树底部B的水平距离BD=a.
第三步:量出测角仪的高度CD=b.
之后,他俩又将每个步骤都测量了三次,把三次测得的数据绘制成如下的条形统计图和折线统计图.

请你根据两个统计图提供的信息解答下列问题.
(1)把统计图中的相关数据填入相应的表格中:
a | b | β | |
第一次 |
15.71 15.71
|
1.31 1.31
|
29.5° 29.5°
|
第二次 |
15.83 15.83
|
1.33 1.33
|
30.8° 30.8°
|
第三次 |
15.89 15.89
|
1.32 1.32
|
29.7° 29.7°
|
平均值 |
15.81 15.81
|
1.32 1.32
|
30° 30°
|
3
≈
1
.
732
2
≈
1
.
414
【答案】15.71;1.31;29.5°;15.83;1.33;30.8°;15.89;1.32;29.7°;15.81;1.32;30°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:257引用:52难度:0.5
相似题
-
1.如图,建筑物AB后有一座假山,其坡度为i=1:
,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)3发布:2025/6/19 20:0:1组卷:4676引用:65难度:0.7 -
2.九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.
(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.
(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.
(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).
备用数据:tan60°=1.732,tan30°=0.577,=1.732,3=1.414.2发布:2025/6/19 20:0:1组卷:678引用:62难度:0.5 -
3.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:
≈1.414,2≈1.732)3发布:2025/6/19 20:0:1组卷:1983引用:83难度:0.5