已知向量m=(-1,cosωx+3sinωx),n=(f(x),cosωx),其中ω>0,且m⊥n,又函数f(x)的图象任意两相邻对称轴间距为32π.
(Ⅰ)求ω的值;
(Ⅱ)设α是第一象限角,且f(32α+π2)=2326,求sin(α+π4)cos(4π+2α)的值.
m
3
n
m
n
3
2
3
2
π
2
23
26
sin
(
α
+
π
4
)
cos
(
4
π
+
2
α
)
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:54引用:3难度:0.7
相似题
-
1.如图,在△ABC中,
,D是BC边上一点,且AB=36,∠B=π4.∠ADB=π3
(1)求AD的长;
(2)若CD=10,求AC的长及△ACD的面积.发布:2025/1/24 8:0:2组卷:325引用:7难度:0.5 -
2.在华罗庚著的《数学小丛书》中,由一个定理的推导过程,得出一个重要的正弦函数的不等式
≤sinsinα1+sinα2+…+sinαnn,若四边形ABCD的四个内角为A,B,C,D,则α1+α2+…+αnn的最大值为( )sinA+sinB+sinC+sinD4发布:2025/1/5 18:30:5组卷:71引用:1难度:0.7 -
3.在△ABC中,“A<B<C”是“cos2A>cos2B>cos2C”的( )
发布:2025/1/5 18:30:5组卷:190引用:11难度:0.7