【数学概念】
我们把存在内切圆与外接圆的四边形称为双圆四边形.例如,如图①,四边形ABCD内接于⊙M,且每条边均与⊙P相切,切点分别为E,F,G,H,因此该四边形是双圆四边形.

【性质初探】
(1)双圆四边形的对角的数量关系是 互补互补,依据是 圆的内接四边形的对角互补圆的内接四边形的对角互补.
(2)直接写出双圆四边形的边的性质.(用文字表述)
(3)在图①中,连接GE,HF,求证GE⊥HF.
【揭示关系】
(4)根据双圆四边形与四边形、平行四边形、矩形、菱形、正方形的关系,在图②中画出双圆四边形的大致区域,并用阴影表示.
【特例研究】
(5)已知P,M分别是双圆四边形ABCD的内切圆和外接圆的圆心,若AB=1,∠BCD=60°,∠B=90°,则PM的长为 2-32-3.
3
3
【考点】圆的综合题.
【答案】互补;圆的内接四边形的对角互补;2-
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/14 7:0:1组卷:328引用:1难度:0.3
相似题
-
1.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.
(1)求证:P为优弧BAC的中点;
(2)连接PC,求PC的长度;
(3)求sin∠BAC的值;
(4)若△ABC为非锐角三角形,请直接写出△ABC的面积的最大值.发布:2025/6/15 3:0:1组卷:97引用:1难度:0.1 -
2.如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.
(1)求证:直线AE是⊙O的切线.
(2)若CD=6,AB=16,求⊙O的半径;
(3)在(2)的基础上,点F在⊙O上,且=ˆBC,△ACF的内心点G在AB边上,求BG的长.ˆBF发布:2025/6/14 23:0:1组卷:1104引用:7难度:0.1 -
3.【数学概念】
有一条对角线平分一组对角的四边形叫“对分四边形”.
【概念理解】
(1)关于“对分四边形”,下列说法正确的是 .(填所有正确的序号)
①菱形是“对分四边形”
②“对分四边形”至少有两组邻边相等
③“对分四边形”的对角线互相平分
【问题解决】
(2)如图①,PA为⊙O的切线,A为切点.在⊙O上是否存在点B、C,使以P、A、B、C为顶点的四边形是“对分四边形”?小明的作法:
①以P为圆心,PA长为半径作弧,与⊙O交于点B;
②连接PO并延长,交⊙O于点C;
③点B、C即为所求.
(3)如图②,已知线段AB和直线l,请在图②中利用无刻度的直尺和圆规,在直线l上作出点M、N,使以A、B、M、N为顶点的四边形是“对分四边形”.(只要作出一个即可,不写作法,保留作图痕迹)
(4)如图③,⊙O的半径为5,AB是⊙O的弦,AB=8,点C是⊙O上的动点,若存在四边形ABCD是“对分四边形”,且有一条边所在的直线是⊙O的切线,直接写出AC的长度.发布:2025/6/14 20:30:2组卷:977引用:3难度:0.1