如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).
(1)若h=1.5,EF=0.5m.
①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;
②求下边缘抛物线与x轴的正半轴交点B的坐标;
③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.
(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.

【考点】二次函数的应用.
【答案】(1)①y=-(x-2)2+2,OC为6m;
②(2,0);
③2≤d≤2-1;
(2).
1
8
②(2,0);
③2≤d≤2
3
(2)
65
32
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:4102引用:7难度:0.3
相似题
-
1.如图1,已知排球场的长度为18m,宽9m,位于球场中线处的球网AB的高,度为2.24m.一球员定点发球技术非常稳定,当他站在底线中点O处发球时,排球运动轨迹是如图2的抛物线,C点为击球点,OC=1.8m,球飞行到达最高点F处时,其高度为2.6m,F与C的水平之距为6m,以O为原点建立如图所示的平面直角坐标系(排球大小)忽略不计).
(1)当他站在底线中点O处向正前方发球时,
①求排球飞行的高度y与水平距离x之间的函数关系式(不用写x的取值范围).
②这次所发的球能够过网吗?如果能够过网,是否会出界?并说明理由.
(2)假设该球员改变发球方向和击球点高度时球运动轨迹的抛物线形状不变,在点O处上方击球,要使球落在①号区域(以对方场地的边线底线交点M为圆心,半径为1.5m的扇形)内,球员跳起的高度范围是多少?(≈4.12,结果保留两位小数)17发布:2025/5/23 9:0:2组卷:348引用:3难度:0.2 -
2.根据《平顶山市志》记载,中兴路湛河桥是“市区第一座横跨湛河的大桥”.已知该桥的桥拱为抛物线形,在正常水位时测得水面AB的宽为50m,最高点C距离水面10m,如图所示以AB所在的直线为x轴,AB的中点为原点建立平面直角坐标系.
(1)求该抛物线的表达式;
(2)某次大雨后水面上涨至EF,测得最高点C距离EF的高度为3.6m,求桥拱下水面EF的宽度.发布:2025/5/23 9:30:1组卷:331引用:2难度:0.5 -
3.某超市销售一种成本为30元/千克的食品,第x天的销售价格为m元/千克,销售量为n千克,如表是整理后的部分数据.
时间x/天 1 5 10 20 … 销售价格m/(元/千克) 54.5 52.5 50 45 … 销售量n/千克 66 90 120 180 …
(2)当30≤x≤40时,求第几天的销售利润最大?最大利润是多少?
(3)如果该超市把销售价格在当天的基础上提高a元/千克(原销售量不变),那么前25天(包含第25天)每天的销售利润随x的增大而增大,请直接写出a的取值范围 .发布:2025/5/23 9:30:1组卷:376引用:3难度:0.4