图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状拼成一个正方形.

(1)图b中的阴影部分的面积为(m-n)2(m-n)2;
(2)观察图b请你写出三个代数式(m+n)2、(m-n)2、mn之间的等量关系是(m-n)2+4mn=(m+n)2(m-n)2+4mn=(m+n)2;
(3)若x+y=-6,xy=2.75,则x-y=±5±5;
(4)实际上有许多代数恒等式可以用图形的面积来表示.如图c,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,利用它的面积将多项式m2+4mn+3n2因式分解m2+4mn+3n2=(m+n)(m+3n)(m+n)(m+3n).
【考点】因式分解的应用.
【答案】(m-n)2;(m-n)2+4mn=(m+n)2;±5;(m+n)(m+3n)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:120引用:1难度:0.3