某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:

(1)如图1,在正方形ABCD中,E,F分别是AB,AD上的两点,连接DE,CF,若DE⊥CF,求证:CF=DE.
(2)如图2,在矩形ABCD中,过点C作CE⊥BD交AD于点E,若tan∠DCE=23,求CEBD的值.
(3)如图3,在四边形ABCD中,∠A=∠B=90°,E为AB上一点,连接DE,过点C作DE的垂线交ED的延长线于点G,交AD的延长线于点F,且AB=5,AD=3,CF=7.求DE的长.
2
3
CE
BD
【考点】四边形综合题.
【答案】(1)证明见解析;
(2);
(3).
(2)
2
3
(3)
21
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/23 9:30:1组卷:331引用:3难度:0.4
相似题
-
1.将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在矩形的边OC上,折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O'落在第一象限.设O′Q=t.
(Ⅰ)如图①,当t=1时,求∠O′QA的大小和点O′的坐标;
(Ⅱ)如图②,若折叠后重合部分为四边形,O′Q,O'P分别与边AB相交于点E,F,试用含有t的式子表示重叠部分的面积S,并写出t的取值范围;
(Ⅲ)当折痕PQ恰好过点A时,求折叠后重合部分的面积 .发布:2025/5/23 17:0:1组卷:311引用:1难度:0.1 -
2.如图,在△ABC中,∠ABC=30°,AB=AC,点O为BC的中点,点D是线段OC上的动点(点D不与点O,C重合),将△ACD沿AD折叠得到△AED,连接BE.
(1)当AE⊥BC时,∠AEB=°;
(2)探究∠AEB与∠CAD之间的数量关系,并给出证明;
(3)设AC=4,△ACD的面积为x,以AD为边长的正方形的面积为y,求y关于x的函数解析式.发布:2025/5/23 17:30:1组卷:977引用:7难度:0.5 -
3.【基础巩固】(1)如图1,在△ABC中,D,E分别在AB,BC上,∠BDE=∠C,求证:BD⋅BA=BE⋅BC.
【尝试应用】(2)如图2,在△ABC中,D,E,F分别在AB,BC,CA上,四边形ADEF为平行四边形,∠DFE=∠C,AD=4,BD=2,求AC的长.
【拓展提高】(3)如图3,平行四边形ABCD的周长为10,E,G分别在AC,AD上,四边形ECFG为平行四边形,CE=4AE,∠B=2∠CEF=2∠AGE,求EF的长.发布:2025/5/23 17:30:1组卷:334引用:1难度:0.3