如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD、△BCE、△ABC的面积分别是S1、S2、S3,现有如下结论:
①S1:S2=AC2:BC2;
②连接AE,BD,则△BCD≌△ECA;
③若AC⊥BC,则S1•S2=34S32.
其中结论正确的序号是①②③①②③.
3
4
【考点】全等三角形的判定与性质;等边三角形的性质.
【答案】①②③
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:886引用:60难度:0.5
相似题
-
1.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:
(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.
请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.发布:2025/6/18 13:0:8组卷:323引用:38难度:0.7 -
2.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是.(仅添加一对相等的线段或一对相等的角)
发布:2025/6/18 13:30:1组卷:308引用:6难度:0.7 -
3.阅读下题及其证明过程:
已知:如图,D是△ABC中BC的中点,EB=EC,∠ABE=∠ACE,
试说明:∠BAE=∠CAE.
证明:在△AEB和△AEC中,EB=EC∠ABE=∠ACEAE=AE
∴△AEB≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
问:(1)上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?
(2)写出你认为正确的推理过程.发布:2025/6/18 13:30:1组卷:529引用:6难度:0.5