试卷征集
加入会员
操作视频

在初中学习中,我们知道:点到直线的距离是直线外一点和直线上各点连接的所有线段中,最短的线段(即垂线段)的长度.类比,我们给出点到某一个图形的距离的定义:点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离,记为d(P,图形D).特别地,若点P在图形上,则点P到图形的距离为0,即d(P,图形)=0.

(1)①若点P是⊙O内一点,⊙O的半径是5,OP=2,则d(P,⊙O)=
3
3

②如图1,在平面直角坐标系xOy中,A(4,0),∠AOB=60°,B在x轴上方.若M(0,2),N(-1,0),则d(M,∠AOB)=
1
1
;d(N,∠AOB)=
1
1

(2)在正方形OABC中,点B(4,4),如图2,若点P在直线y=3x+4上,且d(P,
AOB
=
2
2
=2
2
,求点P的坐标;
(3)已知点P(m+1,2m-3),记抛物线y=ax2+ax-2a(a为常数)的图象为l,若d(P,l)的最小值为
23
40
5
,求a的值.

【考点】二次函数综合题
【答案】3;1;1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:320引用:1难度:0.3
相似题
  • 1.如图,已知抛物线y=ax2+bx-2与x轴的两个交点是A(4,0),B(1,0),与y轴的交点是C.
    (1)求该抛物线的解析式;
    (2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由;
    (3)设抛物线的顶点是F,对称轴与AC的交点是N,P是在AC上方的该抛物线上一动点,过P作PM⊥x轴,交AC于M.若P点的横坐标是m.问:
    ①m取何值时,过点P、M、N、F的平面图形不是梯形?
    ②四边形PMNF是否有可能是等腰梯形?若有可能,请求出此时m的值;若不可能,请说明理由.

    发布:2025/1/2 8:0:1组卷:83引用:1难度:0.5
  • 2.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2-2x-3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为

    发布:2024/12/23 17:30:9组卷:3749引用:38难度:0.4
  • 3.如图,将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C在x轴上,点D(3
    5
    ,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.若抛物线y=ax2-4
    5
    ax+10(a≠0且a为常数)的顶点落在△ADE的内部,则a的取值范围是(  )

    发布:2024/12/26 1:30:3组卷:2679引用:7难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正