综合与实践.
在一次综合实践活动课上,数学王老师给每位同学各发了一张正方形纸片,要求同学们仅通过折纸的方法来确定该正方形一边上的一个三等分点.
“启航”小组的同学在经过一番思考和讨论交流后,进行了如下的操作:
第一步:如图1,将正方形纸片ABCD的一条边AD对折,使点A和点D重合,得到AD的中点E,然后展开铺平;
第二步:如图2,将CD边沿CE翻折到CF的位置;
第三步:如图3,再将BC沿过点C的直线翻折,使点B和点F重合,折痕与AB边交于点G.
他们认为:该点G就是AB边的一个三等分点.
(1)试证明上面的结论:
(2)“奋进”小组的同学是这样操作的:
第一步:先将正方形纸片ABCD的一条边AD对折,使点A和点D重合,找到AD的中点E;
第二步:再折出正方形纸片ABCD的对角线AC,以及点B和点E的连线BE,这两条折痕相交于点F;
第三步:最后,过点F折出AB的平行线GN,分别与AD,BC交于点G和点N.
①请根据上面的描述,在图4中画出所有的折痕,确定点G和点N的位置;
②请结合①中所画的图形,判断点G是否为AD边的三等分点,并说明理由.

【考点】四边形综合题.
【答案】(1)证明过程见解答;
(2)①图形见解答;
②点G是AD边的三等分点.理由见解答.
(2)①图形见解答;
②点G是AD边的三等分点.理由见解答.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:242引用:1难度:0.1
相似题
-
1.(1)如图1,在正方形ABCD中.E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.
(2)如图2,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD与正方形PBEF,连接DE分别交线段BC,PC于点M,N.
①求∠DMC的度数;
②连接AC交DE于点H,求的值.DHBC发布:2025/5/24 16:30:1组卷:236引用:4难度:0.3 -
2.如图,在正方形ABCD中,点P为对角线AC上一动点(点P不与点A点C重合),过点P作PE⊥AD于点E,点M为CP的中点,分别连接MB、MD、ME.
(1)求证:△AMB≌△AMD;
(2)连接BE,过点M作MN⊥AD于点N,证明:△BME是等腰直角三角形;
(3)将图中△PEA绕点A顺时针旋转45°得到△P′E′A,设点M′为P′C的中点,连接M′E′、M′B、E′B(请在备用图中画出图形),判断此时△BM′E′的形状,并说明理由.发布:2025/5/24 16:30:1组卷:61引用:1难度:0.4 -
3.(1)如图1,四边形ABCD为正方形,BF⊥AE,那么BF与AE相等吗?为什么?
(2)如图2,在Rt△ABC中,BA=BC,∠ABC=90°,D为BC边的中点,BE⊥AD于点E,交AC于F,求AF:FC的值;
(3)如图3,Rt△ACB中,∠ABC=90°,D为BC边的中点,BE⊥AD于点E,交AC于F,若AB=3,BC=4,求CF.发布:2025/5/24 16:30:1组卷:1793引用:4难度:0.1