如图1所示,直线y=x+c与x轴交于A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过A,C.

(1)求抛物线的解析式;
(2)点E在抛物线的对称轴上,求CE+OE的最小值;
(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N
①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为 92或492或4;
②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
9
2
9
2
【考点】二次函数综合题.
【答案】或4
9
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:208引用:2难度:0.2
相似题
-
1.已知:将函数
的图象向上平移2个单位,得到一个新的函数图象.y=33x
(1)写出这个新的函数的解析式;
(2)若平移前后的这两个函数图象分别与y轴交于O,A两点,与直线交于C,B两点.试判断以A,B,C,O四点为顶点四边形状,并说明理由;x=-3
(3)若(2)中的四边形(不包括边界)始终覆盖着二次函数的图象一部分,求满足条件的实数b的取值范围.y=x2-2bx+b2+12发布:2025/6/9 20:30:1组卷:51引用:5难度:0.1 -
2.如图(1),二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于C点,点B的坐标为(3,0),点C的坐标为(0,3),直线l经过B、C两点.
(1)求该二次函数的表达式及其图象的顶点坐标;
(2)点P为直线l上的一点,过点P作x轴的垂线与该二次函数的图象相交于点M,再过点M作y轴的垂线与该二次函数的图象相交于另一点N,当PM=MN时,求点P的横坐标;12
(3)如图(2),点C关于x轴的对称点为点D,点P为线段BC上的一个动点,连接AP,点Q为线段AP上一点,且AQ=3PQ,连接DQ,当3AP+4DQ的值最小时,直接写出DQ的长.发布:2025/6/9 21:30:1组卷:6059引用:7难度:0.2 -
3.如图,已知抛物线y=
x2+bx+c经过点A(-1,0)、B(5,0).13
(1)求抛物线的解析式,并写出顶点M的坐标;
(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;
(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)发布:2025/6/9 18:30:1组卷:1924引用:6难度:0.2