已知:如图,直线l:y=13x+b,经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),设x1=d(0<d<1).
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.

1
3
1
4
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:466引用:31难度:0.1
相似题
-
1.如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2-
x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.154
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,直接写出t的值.发布:2025/6/7 16:30:2组卷:39引用:2难度:0.1 -
2.如图1,抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于点C,AB=8,B点横坐标为2,延长矩形OBDC的DC边交抛物线于E.
(1)求抛物线的解析式;
(2)如图2,若点P是直线EO上方的抛物线上的一个动点,过点P作x轴的垂线交直线EO于点M,求PM的最大值;
(3)如图3,如果点F是抛物线对称轴l上一点,抛物线上是否存在点G,使得以F,G,A,C为顶点的四边形是平行四边形?若存在,求出所有满足条件的点G的坐标;若不存在,请说明理由.发布:2025/6/7 7:0:1组卷:565引用:8难度:0.1 -
3.如图,抛物线y=ax2+bx与x轴交于点A(-2,0),与反比例函数y=
图象交于点B,过点B作BQ⊥y轴于点Q,BQ=1.3x
(1)求抛物线的表达式;
(2)若点P是抛物线对称轴上一点,当BP+OP的值最小时,求线段QP的长;
(3)若点M是平面直角坐标系内任意一点,在抛物线的对称轴上是否存在一点D,使得以A,B,D,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.发布:2025/6/7 17:30:1组卷:37引用:1难度:0.4