当我们利用2种不同的方法计算同一图形的面积时,可以得到一个等式.例如,由图1可得等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.
(2)利用(1)中所得到的结论,解决下面的问题:
已知a+b+c=13,ab+bc+ac=52,求a2+b2+c2的值.
(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可用来验证等式:(3a+b)(a+3b)=3a2+10ab+3b2.

【考点】完全平方公式的几何背景;多项式乘多项式.
【答案】(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:398引用:2难度:0.7
相似题
-
1.已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题的图形是( )
发布:2025/6/22 15:30:1组卷:2386引用:20难度:0.7 -
2.如图是用4个全等的长方形拼成的一个“回形”正方形,将图中阴影部分面积用2种方法表示可得一个等式,这个等式为
发布:2025/6/23 19:0:1组卷:340引用:3难度:0.7 -
3.图1是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按图2 的形状拼成一个正方形.
(1)图2的阴影部分的正方形的边长是
(2)用两种不同的方法求图中阴影部分的面积.
【方法1】S阴影=
【方法2】S阴影=
(3)观察图2,写出(a+b)2,(a-b)2,ab 这三个代数式之间的等量关系.
(4)根据(3)题中的等量关系,解决问题:若m+n=10,m-n=6,求mn的值.发布:2025/6/24 1:30:2组卷:1444引用:10难度:0.3