如图,某巡逻艇在A处发现北偏东30°相距6+2海里的B处有一艘走私船,正沿东偏南45°的方向以3海里/小时的速度向我海岸行驶,巡逻艇立即以22海里/小时的速度沿着正东方向直线追去,1小时后,巡逻艇到达C处,走私船到达D处,此时走私船发现了巡逻艇,立即改变航向,以原速向正东方向逃窜,巡逻艇立即加速以32海里/小时的速度沿着直线追击.
(1)当走私船发现了巡逻艇时,两船相距多少海里
(2)问巡逻艇应该沿什么方向去追,才能最快追上走私船.
6
+
2
2
2
【考点】解三角形.
【答案】(1)当走私船发现了巡逻艇时,两船相距海里;
(2)巡逻艇应该沿东偏北15°去追,才能最快追上走私船.
3
(2)巡逻艇应该沿东偏北15°去追,才能最快追上走私船.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/12/29 1:0:8组卷:124引用:6难度:0.6
相似题
-
1.已知灯塔A在海洋观察站C的北偏东65°,距离海洋观察站C的距离为akm,灯塔B在海洋观察站C的南偏东55°,距离海洋观察站C的距离为3akm,则灯塔A与灯塔B的距离为( )
发布:2024/12/30 4:0:3组卷:50引用:3难度:0.7 -
2.在①
,②2a-c=2bcosC,③(a-b)(a+b)=(a-c)c这三个条件中任选一个,补充在下面的问题中,并解答该问题.3(a-bcosC)=csinB
在△ABC中,内角A,B,C的对边分别是a,b,c,且满足 _____,.b=23
(1)若a+c=4,求△ABC的面积;
(2)求△ABC周长l的取值范围.发布:2024/12/29 13:0:1组卷:280引用:4难度:0.5 -
3.如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点A,B到某一点C的距离分别为5和8,∠ACB=60°,则A,B之间的距离为( )
发布:2024/12/29 13:0:1组卷:294引用:5难度:0.7