问题提出
学习了三角形全等的判定方法(即“SAS”,“ASA”,“AAS”,“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
初步思考
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可以分为“∠B是直角、钝角、锐角”三种情况进行探究.
深入探究
第一种情况:当∠B为直角时,△ABC≌△DEF
(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据 HLHL,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B为钝角时,△ABC≌△DEF
(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B为锐角时,△ABC和△DEF不一定全等
(3)如图,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你用尺规在图③中再作出△DEF,△DEF和△ABC不全等.(不写作法,保留作图痕迹).
(4)∠B还要满足什么条件,就可以使得△ABC≌△DEF,请直接填写结论:
在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,若 ∠B≥∠A且∠B+∠A=90°∠B≥∠A且∠B+∠A=90°,则△ABC≌△DEF.

【考点】全等三角形的判定.
【答案】HL;∠B≥∠A且∠B+∠A=90°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:509引用:3难度:0.3
相似题
-
1.已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,EF交AD于点G.请找出图中所有的全等三角形,并将它们用“≌”符号表示出来.
发布:2025/1/24 8:0:2组卷:31引用:1难度:0.1 -
2.如图,已知AB=AC,AE=AD,点B,D,E,C在同一条直线上,要利用“SSS”推理得出△ABE≌△ACD,还需要添加的一个条件可以是( )
发布:2024/12/23 13:30:1组卷:235引用:6难度:0.7 -
3.如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且DE=CB.
求证:△CED≌△ABC.发布:2025/1/28 8:0:2组卷:964引用:5难度:0.6