如图1,梯形ABCD中,AB∥CD,过A、B分别作AE⊥CD,BF⊥CD,垂足分别为E,F,AB=AE=2,CD=5,已知DE=1,将梯形ABCD沿AE、BF折起,得空间几何体ADE-BCF,如图2.

(1)在图2中,若AF⊥BD,证明:DE⊥平面ABFE.
(2)在图2中,若DE∥CF,CD=3,在线段AB上求一点P,使CP与平面ACD所成角的正弦值最大,并求出这个最大值.
3
【答案】(1)证明过程见解答;(2)当P为点B时,CP与平面ACD所成角的正弦值最大,为.
10
10
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/9/20 2:0:8组卷:66引用:3难度:0.5
相似题
-
1.如图,AB为圆O的直径,点E,F在圆上,AB∥EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,EF=1.
(Ⅰ)求证:BF⊥平面ADF;
(Ⅱ)求BF与平面ABCD所成的角;
(Ⅲ)在DB上是否存在一点M,使ME∥平面ADF?若不存在,请说明理由;若存在,请找出这一点,并证明之.发布:2025/1/20 8:0:1组卷:23引用:3难度:0.3 -
2.如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.
(1)求证:BC⊥平面PAC;
(2)设Q为PA的中点,G△AOC的重心,求证:QG∥平面PBC.
(3)若AC=BC=,PC与平面ACB所成的角为3,求三棱锥P-ACB的π3
体积.发布:2025/1/20 8:0:1组卷:74引用:1难度:0.7 -
3.AB为圆O的直径,点E,F在圆上,AB∥EF,矩形ABCD所
在平面与圆O所在平面互相垂直,
已知AB=2,EF=1.
(1)求证:BF⊥平面DAF;
(2)求BF与平面ABCD所成的角;
(3)若AC与BD相交于点M,
求证:ME∥平面DAF.发布:2025/1/20 8:0:1组卷:29引用:3难度:0.1