已知抛物线C:y2=2px(p>0)的焦点为F,D(1,0),点P是在第一象限内C上的一个动点,当DP与x轴垂直时,|PF|=54,过点P作与C相切的直线l交y轴于点M,过点M作直线l的垂线交抛物线C于A,B两点.
(1)求C的方程;
(2)如图,连接PD并延长,交抛物线C于点Q.
①设直线AB,OQ(其中O为坐标原点)的斜率分别为k1,k2,证明:k1k2为定值;
②求S△OPQS△ABD的最小值.
|
PF
|
=
5
4
k
1
k
2
S
△
OPQ
S
△
ABD
【答案】(1)y2=x;
(2)①证明见解析;②.
(2)①证明见解析;②
4
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:277引用:5难度:0.5
相似题
-
1.抛物线x2=4y的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足AF⊥BF,P为线段AB的中点,设P在l上的射影为Q,则
的最大值是( )|PQ||AB|发布:2024/12/29 5:30:3组卷:475引用:8难度:0.5 -
2.如图,设抛物线y2=2px的焦点为F,过x轴上一定点D(2,0)作斜率为2的直线l与抛物线相交于A,B两点,与y轴交于点C,记△BCF的面积为S1,△ACF的面积为S2,若
,则抛物线的标准方程为( )S1S2=14发布:2024/12/17 0:0:2组卷:163引用:6难度:0.6 -
3.如图,已知点P是抛物线C:y2=4x上位于第一象限的点,点A(-2,0),点M,N是y轴上的两个动点(点M位于x轴上方),满足PM⊥PN,AM⊥AN,线段PN分别交x轴正半轴、抛物线C于点D,Q,射线MP交x轴正半轴于点E.
(Ⅰ)若四边形ANPM为矩形,求点P的坐标;
(Ⅱ)记△DOP,△DEQ的面积分别为S1,S2,求S1•S2的最大值.发布:2024/12/29 1:0:8组卷:96引用:2难度:0.4