在△ABC中,∠A=90°,点D在射线AC上,点E在射线BC上(不与点B重合),连接BD、ED.

(1)如图①,当点D在线段AC的延长线上,且AC=DC时,过点D作DG∥AB交BC的延长线于点G,若AB=9,GC=313.求△ABC的面积.
(2)如图②,当点D在线段AC上,点E在线段BC上时,若∠CDE=∠ADB=75°,∠C=45°,BC=33+9,直接写出线段DE的长.
(3)若AC=3CD,∠CDE=∠ADB,作射线AE,交直线BD于点F,直接写出BFFD的值.
GC
=
3
13
BC
=
3
3
+
9
BF
FD
【考点】相似形综合题.
【答案】(1)27;
(2)6.
(3)的值为6.
(2)6.
(3)
BF
FD
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:359引用:1难度:0.3
相似题
-
1.如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF、ON于点B、点C,连接AB、PB.
(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;
(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;
(3)如图3,∠MON=60°,连接AP,设=k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.APOQ发布:2025/5/24 23:30:2组卷:2276引用:6难度:0.3 -
2.如图1,Rt△ABC中,∠A=90°,D为AB上一点,∠ACD=∠B.
(1)求证:AC2=AD•AB;
(2)如图2,过点A作AM⊥CD于M,交BC于点E,若,求CDBC=12的值;AMME
(3)如图3,N为CD延长线上一点,连接AN、BN,若,∠NBD=2∠ACD,则tan∠ANC的值为 .CDBN=53发布:2025/5/24 23:30:2组卷:239引用:1难度:0.3 -
3.如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:
(1)求点N的坐标(用含x的代数式表示);
(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.发布:2025/5/25 2:30:1组卷:4642引用:26难度:0.5