在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”,特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.

(1)如图,点A(-3,1),B(3,1).
①原点O到线段AB上一点的最大距离为 22,最小距离为 11;
②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;
(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d的取值范围.
3
3
【考点】圆的综合题.
【答案】2;1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/26 11:30:1组卷:776引用:3难度:0.2
相似题
-
1.如图,已知四边形ABCD是平行四边形,AC,BD相交于O,∠ABC的平分线交CD的延长线于F,⊙O′是△DEF的外接圆,G是⊙O上一点,且AG=CD.求证:BG∥OO′.
发布:2025/5/27 11:30:1组卷:82引用:1难度:0.5 -
2.如图,分别以边长1为的等边三角形ABC的顶点为圆心,以其边长为半径作三个等圆,得交点D、E、F,连接CF交⊙C于点G,以点E为圆心,EG长为半径画弧,交边AB于点M,求AM的长.
发布:2025/5/27 4:30:2组卷:57引用:1难度:0.5 -
3.如图,在平面直角坐标系中,A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E.已知CD=8,抛物线经过O,E,A三点.
(1)求直线OB的函数表达式;
(2)求抛物线的函数表达式;
(3)若P为抛物线上位于第一象限内的一个动点,以P,O,A,E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个.发布:2025/5/26 19:30:1组卷:111引用:1难度:0.3