如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,D为BC的中点.动点P从点A开始沿AB边以1cm/s的速度运动,过点P作PE⊥AC,垂足为E.设点P的运动时间为t s(0<t<5).
(1)当t为何值时,四边形PECD为矩形?
(2)设四边形PECD的面积为y cm2,写出y与t的关系式;
(3)是否存在某一时刻t,使四边形PECD与△ABC的面积比为1350?若存在,求出t的值;若不存在,说明理由;
(4)当t为何值时,PD+PE的值最小?

13
50
【考点】四边形综合题.
【答案】(1)当t=2.5s时,四边形PECD为矩形;
(2)y=(0<t<5);
(3)当t=4s时,四边形PECD与△ABC的面积比为;
(4)t=3.2s时,PD+PE的值最小.
(2)y=
-
6
25
t
2
+
3
5
t
+
3
(3)当t=4s时,四边形PECD与△ABC的面积比为
13
50
(4)t=3.2s时,PD+PE的值最小.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:36引用:1难度:0.3
相似题
-
1.阅读下列材料:如图(1),在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.
(1)写出筝形的两个性质(定义除外).
①;②.
(2)如图(2),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.
(3)如图(3),在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD的面积.发布:2025/6/15 18:30:1组卷:1000引用:12难度:0.1 -
2.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).
(1)直接写出点E的坐标;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t=秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当3<t<5时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,用含x,y的式子表示z=.发布:2025/6/15 22:30:1组卷:563引用:3难度:0.4 -
3.(1)如图1,点P是▱ABCD内的一点,分别过点B、C、D作AP的垂线BE、CF、DH,垂足分别为E、F、H,猜想BE、CF、DH三者之间的关系,并证明;
(2)如图2,若点P在▱ABCD的外部,△APB的面积为18,△APD的面积为3,求△APC的面积;
(3)如图3,在(2)条件下,AB=BC,∠APC=∠ABC=90°,设AP、BP分别于CD相交于点M、N,=(请直接写出结论).CPPM发布:2025/6/15 11:0:2组卷:51引用:2难度:0.3