设函数f(x)=ax2+bx+1(a,b为实数),
(1)若f(-1)=0且对任意实数x均有f(x)≥0成立,求f(x)表达式;
(2)在(1)的条件下,若g(x)=f(x)-kx,在区间[-2,2]上是单调函数,则实数k的取值范围;
(3)在(1)的条件下,F(x)=f(x) (x>0) -f(x) (x<0)
,当x∈[-2,2]且x≠0时,求F(x)的值域.
F
(
x
)
=
f ( x ) ( x > 0 ) |
- f ( x ) ( x < 0 ) |
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:71引用:1难度:0.3