【初步探索】
(1)如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.
小明同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ∠BAE+∠FAD=∠EAF∠BAE+∠FAD=∠EAF.
【灵活运用】
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由.

【答案】∠BAE+∠FAD=∠EAF
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1016引用:16难度:0.6
相似题
-
1.已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,EF交AD于点G.请找出图中所有的全等三角形,并将它们用“≌”符号表示出来.
发布:2025/1/24 8:0:2组卷:31引用:1难度:0.1 -
2.如图,已知AB=AC,AE=AD,点B,D,E,C在同一条直线上,要利用“SSS”推理得出△ABE≌△ACD,还需要添加的一个条件可以是( )
发布:2024/12/23 13:30:1组卷:235引用:6难度:0.7 -
3.如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且DE=CB.
求证:△CED≌△ABC.发布:2025/1/28 8:0:2组卷:965引用:5难度:0.6