一只口袋里有形状、大小、质地都相同的4个小球,这4个小球上分别标记着数字1,2,3,4.甲、乙、丙三名学生约定:
(i)每人不放回地随机摸取一个球;
(ii)按照甲、乙、丙的次序依次摸取;
(iii)谁摸取的球的数字最大,谁就获胜.
用有序数组(a,b,c)表示这个试验的基本事件,例如:(1,4,3)表示在一次试验中,甲摸取的球的数字是1,乙摸取的球的数字是4,丙摸取的球的数字是3.
(1)列出样本空间,并指出样本空间中样本点的总数;
(2)求甲获胜的概率;
(3)写出乙获胜的概率,并指出甲、乙、丙三名同学获胜的概率与其摸取的次序是否有关.
【考点】古典概型及其概率计算公式;随机事件.
【答案】(1)样本空间见解析,24;
(2);
(3),甲、乙、丙三名同学获胜的概率与其摸取的次序无关.
(2)
1
3
(3)
1
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/9 8:0:9组卷:10引用:2难度:0.7
相似题
-
1.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )
发布:2024/12/29 13:30:1组卷:121引用:2难度:0.7 -
2.高二某班共有50名学生,其中女生有20名,“三好学生”人数是全班人数的
,且“三好学生”中女生占一半,现从该班学生中任选1人参加座谈会,则在已知没有选上女生的条件下,选上的学生是“三好学生”的概率为( )15发布:2024/12/29 12:0:2组卷:57引用:4难度:0.7 -
3.某公司培训员工某项技能,培训有如下两种方式:
方式一:周一到周五每天培训1小时,周日测试
方式二:周六一天培训4小时,周日测试
测试达标的员工停止参加培训,没达标的继续培训,公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:第一周 第二周 第三周 第四周 甲组 20 25 10 5 乙组 8 16 20 16
(2)在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.发布:2024/12/29 12:30:1组卷:330引用:8难度:0.7