如图,在平面直角坐标系中,O是坐标原点,一次函数y=kx+b的图象与y轴交于点A(0,4),与x轴交于点B,与正比例函数y=32x交于点C,点C的横坐标为2.

(1)求一次函数y=kx+b的表达式;
(2)如图1,点M为线段OA上一点,若S△BCM=56S△BOC,求点M的坐标;
(3)如图2,点N为线段OB上一点,连接CN,将△BCN沿直线CN翻折得到△DCN(点B的对应点为点D),CD交x轴于点E.
①当点D落在y轴上时,请直接写出点D的坐标;
②若△DNE为直角三角形,请直接写出点N的坐标.
y
=
3
2
x
S
△
BCM
=
5
6
S
△
BOC
【考点】一次函数综合题.
【答案】(1);
(2);
(3)①②或(5,0).
y
=
-
1
2
x
+
4
(2)
(
0
,
2
3
)
(3)①
(
0
,
3
-
41
)
(
3
5
+
1
2
,
0
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/14 8:0:9组卷:1362引用:3难度:0.2
相似题
-
1.如图,平面直角坐标系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直线
过A点,且与y轴交于D点.y=-12x+2
(1)求点A、点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O、B、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.发布:2024/12/23 19:30:2组卷:1223引用:3难度:0.4 -
2.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式;
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(-,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.52发布:2024/12/23 17:30:9组卷:4638引用:6难度:0.3 -
3.如图,在梯形ABCD中,AD∥BC,AB=CD,以边BC所在直线为x轴,边BC的中点O为原点建立直角坐标平面,已知点B的坐标为(-4,0),直线AB的解析式为y=2x+m.
(1)求m的值;
(2)求直线CD的解析式;
(3)若点A在第二象限,是否存在梯形ABCD,它的面积为30?若存在,请求出点A的坐标;若不存在,请说明理由.发布:2025/1/21 8:0:1组卷:5引用:0难度:0.3