(1)探索发现:如图1,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点,F是BC边上一点,∠CDF=45°,求证:AC•BF=AD•BD.
(2)尝试应用:如图2,在△ABC中,AB=22,∠B=45°,以A为直角顶点作等腰直角三角形ADE,点D在BC上,点E在AC上,若CE=5,求CD的长.
(3)拓展提高:如图3,在等腰△ABC中,AB=AC=4,E为AB中点,D为AE中点,过点D作直线DM∥BC交AC于M,在直线DM上取一点F,连接BF交CE于点H;若当∠FHC=∠ABC时,DF•BC的值为定值,请直接写出该定值为 1212.

AB
=
2
2
CE
=
5
【考点】相似形综合题.
【答案】12
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/26 11:36:51组卷:311引用:1难度:0.1
相似题
-
1.【感知】
小明同学复习“相似三角形”的时候遇到了这样的一道题目:如图,在△ABC中,AB=AC,D为BC上一点,过点D作∠ADE=∠B,交AC于点E.求证:△ABD∽△DCE.
【探究】
在△ABC中,AB=AC=10,BC=16,D为BC上一点.
(1)如图②,过点D作∠ADE=∠B,交AC于点E.当DE∥AB时,AD的长为 .
(2)如图③,过点D作∠FDE=∠B,分别交AB、AC于点F、E.当CD=4时,BF的长的取值范围为 .发布:2025/6/14 15:30:1组卷:349引用:5难度:0.3 -
2.如图,在△ABC中,∠C=90°,AC=8cm,动点P从点C出发沿着C-B-A的方向以2cm/s的速度向终点A运动,另一动点Q同时从点A出发沿着AC方向以1cm/s的速度向终点C运动,P、Q两点同时到达各自的终点,设运动时间为t(s).△APQ的面积为S cm2.
(1)求BC的长;
(2)求S与t的函数关系式,并写出t的取值范围;
(3)当t为多少秒时,以P、C、Q为顶点的三角形和△ABC相似?发布:2025/6/14 19:0:1组卷:227引用:5难度:0.4 -
3.在四边形ABCD中,∠EAF=
∠BAD(E、F分别为边BC、CD上的动点),AF的延长线交BC延长线于点M,AE的延长线交DC延长线于点N.12
(1)如图①,若四边形ABCD是正方形,求证:△ACN∽△MCA;
(2)如图②,若四边形ABCD是菱形.
①(1)中的结论是否依然成立?请说明理由;
②若AB=8,AC=4,连接MN,当MN=MA时,求CE的长.发布:2025/6/14 19:0:1组卷:1406引用:3难度:0.1