问题情境:
如图1,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转,得到△CBE′(点A的对应点为点C),延长AE交CE′于点F,连接DE.
猜想证明:
(1)试判断四边形BE′FE的形状,并说明理由;
(2)如图2,若DA=DE,请猜想线段CF与FE′的数量关系并加以证明;
解决问题:
(3)如图1,若AB=15,CF=3,请直接写出EF和DE的长.
【考点】四边形综合题.
【答案】(1)四边形BE′FE是正方形,理由见解答;
(2)CF=FE',证明见解答;
(3)EF=9,DE=3.
(2)CF=FE',证明见解答;
(3)EF=9,DE=3
17
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/1 8:0:8组卷:161引用:1难度:0.1
相似题
-
1.如图,在矩形ABCD中,AD=
AB,∠BAD的平分线交BC于点E.DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①AD=AE;②∠AED=∠CED;③OE=OD;④BH=HF;⑤BC-CF=2HE,其中正确的有( )2发布:2025/5/23 22:30:2组卷:1273引用:4难度:0.2 -
2.【问题提出】
(1)如图①,OP为∠AOB的平分线,PC⊥OA于点C,PD⊥OB于点D,若S△OPC=3,则S△OPD=
【问题探究】
(2)如图②,a、b是两条平行的直线,且a、b之间的距离为12,点A为直线a上一点,点B、C为直线b上两点,且点B在点C的左侧,若∠BAC=45°,求BC的最小值;
【问题解决】
(3)如图③,四边形ABCD是园林规划局欲修建的一块平行四边形园林的大致示意图,沿对角线BD修一条人行走道,沿∠BAD的平分线AP(点P在BD上)修一条园林灌溉水渠.根据规划要求,∠ABC=120°,AP=120米,且使得平行四边形ABCD的面积尽可能小,问平行四边形ABCD的面积是否存在最小值?若存在,求出其最小值,若不存在,请说明理由.发布:2025/5/23 22:30:2组卷:137引用:1难度:0.2 -
3.如图,在菱形ABCD中,AB=4,∠BAD=60°,点P从点A出发,沿线段AD以每秒1个单位长度的速度向终点D运动,过点P作PQ⊥AB于点Q,作PM⊥AD交直线AB于点M,交直线BC于点F,设△PQM与菱形ABCD重叠部分图形的面积为S(平方单位),点P的运动时间为t(s)(0≤t≤4).
(1)当点M与点B重合时,t=s;
(2)当t为何值时,△APQ≌△BMF;
(3)求S与t的函数关系式;
(4)以线段PQ为边,在PQ右侧作等边△PQE,当2≤t≤4时,请直接写出点E运动路径的长.发布:2025/5/23 21:0:1组卷:200引用:1难度:0.1