如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.
(1)若l:y=-2x+2,则P表示的函数解析式为y=-x2-x+2y=-x2-x+2;若P:y=-x2-3x+4,则l表示的函数解析式为y=-4x+4y=-4x+4.
(2)求P的对称轴(用含m,n的代数式表示);
(3)如图②,若l:y=-2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
(4)如图③,若l:y=mx-4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=10,直接写出l,P表示的函数解析式.

10
【答案】y=-x2-x+2;y=-4x+4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:4052引用:56难度:0.1
相似题
-
1.如图,已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于C(0,3),DE所在的直线是该抛物线的对称轴.
(1)求抛物线的解析式及顶点D的坐标;
(2)连接AD,P是AD上的动点,P′是点P关于DE的对称点,连接PE,过点P′作P′F∥PE,交x轴于点F,设四边形PP′FE的面积为y,EF=x,求y与x之间的函数关系式.发布:2025/6/16 2:0:1组卷:231引用:2难度:0.3 -
2.如图,抛物线y=ax2+bx+c与x轴交于原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F的距离与点G到直线y=-2的距离总相等.
①证明上述结论并求出点F的坐标;
②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.
证明:当直线l绕点F旋转时,+1MF是定值,并求出该定值;1NF
(3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC周长最小,直接写出P,Q的坐标.发布:2025/6/16 5:0:1组卷:2172引用:5难度:0.4 -
3.如图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连接BD,CD.
(1)求该抛物线的表达式;
(2)判断△BCD的形状,并说明理由;
(3)若点P为该抛物线上一动点(与点B、C不重合),该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,请直接写出满足条件的所有点P的坐标;若不存在,请说明理由.发布:2025/6/16 5:30:3组卷:1379引用:2难度:0.1