综合与实践
在等腰三角形纸片ABC中,AB=AC,∠BAC=36°.现要将其剪成三张小纸片,使每张小纸片都是等腰三角形(不能有剩余).下面是小文借助尺规解决这一问题的过程,请阅读后完成相应的任务.
作法:如图1. ①分别作AB,AC的垂直平分线,交于点P; ②连接PA,PB,PC. 结论:沿线段PA,PB,PC剪开,即可得到三个等腰三角形. 理由:∵点P在线段AB的垂直平分线上, ∴ PA=PB PA=PB .(依据)同理,得PA=PC. ∴PA=PB=PC. ∴△PAB,△PBC,△PAC都是等腰三角形. ![]() |

任务:
(1)上述过程中,横线上的结论为
PA=PB
PA=PB
,括号中的依据为 线段垂直平分线上的点与这条线段两个端点的距离相等
线段垂直平分线上的点与这条线段两个端点的距离相等
.(2)受小文的启发,同学们想到另一种思路:如图2,以点B为圆心,BC长为半径作弧,交AC于点D,交AB于点E.在此基础上构造两条线段(以图中标有字母的点为端点)作为裁剪线,也可解决问题.请在图2中画出一种裁剪方案,并求出得到的三个等腰三角形及相应顶角的度数.
(3)如图3,在等腰三角形纸片ABC中,AB=AC,∠BAC=108°,请在图3中设计出一种裁剪方案,将该三角形纸片分成三个等腰三角形.(要求:尺规作图,保留作图痕迹,不写作法,说明裁剪线)
【考点】四边形综合题.
【答案】PA=PB;PA=PB;线段垂直平分线上的点与这条线段两个端点的距离相等
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:123引用:2难度:0.2
相似题
-
1.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接PA,PE,AC.
(1)求证:四边形ABDE是平行四边形;
(2)求四边形ABDE的周长和面积;
(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.发布:2025/1/28 8:0:2组卷:577引用:1难度:0.2 -
2.如图,菱形ABCD中,AB=5,连接BD,sin∠ABD=
,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.55
(1)求证:AE=CE;
(2)当点P在线段BC上时,设BP=n(0<n<5),求△PEC的面积;(用含n的代数式表示)
(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,请直接写出BP的长.发布:2025/1/28 8:0:2组卷:255引用:1难度:0.1 -
3.如图,在菱形ABCD中,AB=10,sinB=
,点E从点B出发沿折线B-C-D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.35
(1)如图1,点G在AC上.求证:FA=FG.
(2)若EF=FG,当EF过AC中点时,求AG的长.
(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?发布:2025/1/28 8:0:2组卷:2065引用:3难度:0.1