已知,抛物线y=ax2+bx+4(a≠0)与x轴交于点A(-8.0)、B(2,0)(点A在点B的左侧),与y轴交于点C.
(1)求抛物线的解析式;
(2)如图1,点E、G是直线AC上方抛物线上的点,点E位于抛物线对称轴的左侧,设点G的横坐标为g,则点E的横坐标比点G的横坐标g小2.过E作EF∥x轴,交抛物线于点F,过G作GH∥x轴,交直线AC于点H,当EF+2GH的值最大时,求EF+2GH的最大值及此时点E的坐标;
(3)如图2,将抛物线y=ax2+bx+c(a≠0)向右平移2个单位,再向下平移4个单位,得到新的抛物线y',点M为新抛物线上的一个动点,点N为原抛物线对称轴上的一点,当以A,B,M,N为顶点的四边形为平行四边形时,请直接写出点N的坐标;并任选其中一个N点,写出求N点的坐标的过程.

【考点】二次函数综合题.
【答案】(1)抛物线的解析式为y=-x2-x+4;
(2)EF+2GH最大值为23,E(-7,);
(3)N的坐标为(-3,-)或(-3,-)或(-3,-).
1
4
3
2
(2)EF+2GH最大值为23,E(-7,
9
4
(3)N的坐标为(-3,-
5
4
55
4
135
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:202引用:1难度:0.1
相似题
-
1.如图,已知抛物线y=ax2+bx-2与x轴的两个交点是A(4,0),B(1,0),与y轴的交点是C.
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由;
(3)设抛物线的顶点是F,对称轴与AC的交点是N,P是在AC上方的该抛物线上一动点,过P作PM⊥x轴,交AC于M.若P点的横坐标是m.问:
①m取何值时,过点P、M、N、F的平面图形不是梯形?
②四边形PMNF是否有可能是等腰梯形?若有可能,请求出此时m的值;若不可能,请说明理由.发布:2025/1/2 8:0:1组卷:83引用:1难度:0.5 -
2.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2-2x-3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.
发布:2024/12/23 17:30:9组卷:3749引用:38难度:0.4 -
3.如图,将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C在x轴上,点D(3
,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.若抛物线y=ax2-45ax+10(a≠0且a为常数)的顶点落在△ADE的内部,则a的取值范围是( )5发布:2024/12/26 1:30:3组卷:2679引用:7难度:0.7