已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,求证:
①BD=CF;
②AC=CF+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.

【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:5663引用:47难度:0.4
相似题
-
1.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF.
求证:∠AEB=∠CFB.发布:2025/1/24 8:0:2组卷:454引用:4难度:0.7 -
2.如图,在△ABC中,∠BAC=90°,延长BA到点D,使AD=
AB,点E、F分别为BC、AC的中点,请你在图中找出一组相等关系,使其满足上述所有条件,并加以证明.12发布:2025/1/24 8:0:2组卷:4引用:1难度:0.5 -
3.如图,在Rt△ABC中,∠C=∠BED=90°,且CD=DE,AD=BD,则∠B=.
发布:2025/1/28 8:0:2组卷:10引用:0难度:0.7