试卷征集
加入会员
操作视频

【概念认识】
与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的“梅岭圆”.

【初步理解】(1)如图①~③,四边形ABCD是矩形,⊙O1和⊙O2都与边AD相切,⊙O2与边AB相切,⊙O1和⊙O3都经过点B,⊙O3经过点D,3个圆都经过点C.在这3个圆中,是矩形ABCD的“梅岭圆”的有
⊙O1
⊙O1

【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,求它的“梅岭圆”的半径长.
【深入研究】(3)如图④,已知矩形ABCD,用直尺和圆规作它的1个“梅岭圆”.
(友情提醒:不写作法,但需保留作图痕迹)

【考点】圆的综合题
【答案】⊙O1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/20 8:0:8组卷:87引用:3难度:0.2
相似题
  • 1.问题探究
    (1)在△ABC中,BD,CE分别是∠ABC与∠BCA的平分线.
    ①若∠A=60°,AB=AC,如图1,试证明BC=CD+BE;
    ②将①中的条件“AB=AC”去掉,其他条件不变,如图2,问①中的结论是否成立?并说明理由.
    迁移运用
    (2)若四边形ABCD是圆的内接四边形,且∠ACB=2∠ACD,∠CAD=2∠CAB,如图3,试探究线段AD,BC,AC之间的等量关系,并证明.

    发布:2025/6/14 18:30:4组卷:1848引用:5难度:0.2
  • 2.【数学概念】
    有一条对角线平分一组对角的四边形叫“对分四边形”.
    【概念理解】
    (1)关于“对分四边形”,下列说法正确的是
    .(填所有正确的序号)
    ①菱形是“对分四边形”
    ②“对分四边形”至少有两组邻边相等
    ③“对分四边形”的对角线互相平分
    【问题解决】
    (2)如图①,PA为⊙O的切线,A为切点.在⊙O上是否存在点B、C,使以P、A、B、C为顶点的四边形是“对分四边形”?
    小明的作法:
    ①以P为圆心,PA长为半径作弧,与⊙O交于点B;
    ②连接PO并延长,交⊙O于点C;
    ③点B、C即为所求.
    请根据小明的作法补全图形,并证明四边形PACB是“对分四边形”.
    (3)如图②,已知线段AB和直线l,请在图②中利用无刻度的直尺和圆规,在直线l上作出点M、N,使以A、B、M、N为顶点的四边形是“对分四边形”.(只要作出一个即可,不写作法,保留作图痕迹)
    (4)如图③,⊙O的半径为5,AB是⊙O的弦,AB=8,点C是⊙O上的动点,若存在四边形ABCD是“对分四边形”,且有一条边所在的直线是⊙O的切线,直接写出AC的长度.

    发布:2025/6/14 20:30:2组卷:977引用:3难度:0.1
  • 3.如图,⊙M经过O点,并且分别与 x轴、y轴的正半轴交于A、B两点,线段OA,OB(OA>OB)的长是方程 x2-17x+60=0的两根.
    (1)求线段OA、OB的长;
    (2)已知点C在⊙M的
    ˆ
    OA
    劣弧上,MC⊥OA,垂足为点N,求点C的坐标;
    (3)在(2)的条件下,连结BC交OA于D点,在⊙M上是否存在一点P,使△POD的面积和△ABD的面积相等?若存在,求出点P的坐标,若不存在,说明理由;
    (4)若C在优弧OA上,作直线BC交x轴于点D.是否存在△COB∽△CDO?若存在,请直接写出点C的坐标;若不存在,请说明理由.

    发布:2025/6/14 17:0:2组卷:43引用:1难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正