如图,三棱柱ABC-A1B1C1的底面ABC是正三角形,侧面ACC1A1是菱形,平面ACC1A1⊥平面ABC,E,F分别是棱A1C1,BC的中点.
(1)证明:EF∥平面ABB1A1;
(2)若AC=2,∠ACC1=60°,C1G=2GC,求直线B1C1与平面EFG所成角的正弦值.
AC
=
2
,
∠
AC
C
1
=
60
°
,
C
1
G
=
2
GC
【答案】(1)证明见解析;
(2).
(2)
159
53
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:237引用:6难度:0.5
相似题
-
1.AB为圆O的直径,点E,F在圆上,AB∥EF,矩形ABCD所
在平面与圆O所在平面互相垂直,
已知AB=2,EF=1.
(1)求证:BF⊥平面DAF;
(2)求BF与平面ABCD所成的角;
(3)若AC与BD相交于点M,
求证:ME∥平面DAF.发布:2025/1/20 8:0:1组卷:29引用:3难度:0.1 -
2.如图,AB为圆O的直径,点E,F在圆上,AB∥EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,EF=1.
(Ⅰ)求证:BF⊥平面ADF;
(Ⅱ)求BF与平面ABCD所成的角;
(Ⅲ)在DB上是否存在一点M,使ME∥平面ADF?若不存在,请说明理由;若存在,请找出这一点,并证明之.发布:2025/1/20 8:0:1组卷:23引用:3难度:0.3 -
3.如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.
(1)求证:BC⊥平面PAC;
(2)设Q为PA的中点,G△AOC的重心,求证:QG∥平面PBC.
(3)若AC=BC=,PC与平面ACB所成的角为3,求三棱锥P-ACB的π3
体积.发布:2025/1/20 8:0:1组卷:73引用:1难度:0.7