已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线ax-y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.
【考点】直线和圆的方程的应用;圆的标准方程.
【答案】(Ⅰ)(x-1)2+y2=25.
(Ⅱ)().
(Ⅲ)设符合条件的实数a存在,
则直线l的斜率为,
l的方程为,
即x+ay+2-4a=0
由于l垂直平分弦AB,故圆心M(1,0)必在l上,
所以1+0+2-4a=0,解得.
由于,故存在实数
使得过点P(-2,4)的直线l垂直平分弦AB.
(Ⅱ)(
5
12
,
+
∞
(Ⅲ)设符合条件的实数a存在,
则直线l的斜率为
-
1
a
l的方程为
y
=
-
1
a
(
x
+
2
)
+
4
即x+ay+2-4a=0
由于l垂直平分弦AB,故圆心M(1,0)必在l上,
所以1+0+2-4a=0,解得
a
=
3
4
由于
3
4
∈
(
5
12
,
+
∞
)
a
=
3
4
使得过点P(-2,4)的直线l垂直平分弦AB.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1390引用:50难度:0.1
相似题
-
1.已知圆C1:(x-4)2+(y-2)2=20与y轴交于O,A两点,圆C2过O,A两点,且直线C2O与圆C1相切;
(1)求圆C2的方程;
(2)若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在求出定点坐标,若不存在,说明理由.发布:2024/10/16 15:0:1组卷:547引用:7难度:0.3 -
2.已知直角坐标系xOy中,圆O:x2+y2=16.
①过点P(4,2)作圆O的切线m,求m的方程;
②直线l:y=kx+b与圆O交于点M,N两点,已知T(8,0),若x轴平分∠MTN,证明:不论k取何值,直线l与x轴的交点为定点,并求出此定点坐标.发布:2024/9/25 3:0:1组卷:147引用:2难度:0.6 -
3.若直线ax+y=0始终平分圆x2+y2-2ax+2ay+2a2+a-1=0的周长,则a的值为( )
发布:2024/12/8 10:30:3组卷:357引用:2难度:0.8