已知函数f(x)=logmx-3x+3(m>0且m≠1).
(1)当m=2时,解不等式f(x)>1;
(2)若0<m<1,是否存在β>α>0,使f(x)在[α,β]的值域为[logmm(β-1),logmm(α-1)]?若存在,求出此时m的取值范围;若不存在,请说明理由.
x
-
3
x
+
3
【考点】指、对数不等式的解法.
【答案】(1)(-9,-3);
(2)所求m存在,且m的取值范围为.
(2)所求m存在,且m的取值范围为
(
0
,
2
-
3
4
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:13引用:2难度:0.5