已知数列{an}的通项为an,前n项和为sn,且an是sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(Ⅰ)求数列{an}、{bn}的通项公式an,bn
(Ⅱ)设{bn}的前n项和为Bn,试比较1B1+1B2+…+1Bn与2的大小.
(Ⅲ)设Tn=b1a1+b2a2+…+bnan,若对一切正整数n,Tn<c(c∈Z)恒成立,求c的最小值.
1
B
1
+
1
B
2
+
…
+
1
B
n
b
1
a
1
+
b
2
a
2
+
…
+
b
n
a
n
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/9 8:0:8组卷:223引用:6难度:0.5
相似题
-
1.古印度数学家婆什伽罗在《丽拉沃蒂》一书中提出如下问题:某人给一个人布施,初日施2子安贝(古印度货币单位),以后逐日倍增,问一月共施几何?在这个问题中,以一个月31天计算,记此人第n日布施了an子安贝(其中1≤n≤31,n∈N*),数列{an}的前n项和为Sn.若关于n的不等式
恒成立,则实数t的取值范围为( )Sn-62<a2n+1-tan+1发布:2024/12/9 14:30:1组卷:53引用:3难度:0.6 -
2.已知等比数列{xn}的各项为不等于1的正数,数列{yn}满足
(a>0,且a≠1),设y3=18,y6=12.ynlogaxn=2
(1)数列{yn}的前多少项和最大,最大值是多少?
(2)试判断是否存在自然数M,使得n>M时,xn>1恒成立,若存在,求出最小的自然数M,若不存在,请说明理由.发布:2025/1/14 8:0:1组卷:11引用:1难度:0.1 -
3.已知等比数列{an}的前n项和为Sn,
,则使得不等式Sn+1+1=4an(n∈N*)成立的正整数m的最大值为( )am+am+1+…+am+k-am+1Sk<2023(k∈N*)发布:2024/12/7 11:0:2组卷:218引用:4难度:0.5